
MAE 106 ROBOT SIMULATION GUIDE 

Introduction. The MATLAB function robot_simulation.m may be used to simulate the 

dynamics of a robot during the “Attack on the Anthill” competition, and compare the 

performance of various control strategies and control gains. This guide will outline how to 

simulate your robot, how to interpret the various graphical representations of robot 

behavior, and provide some guidance about how to implement the simulated estimator 

and controller in your Arduino sketch. The structure of the simulation can be seen in the 

figure below. 

 

 

 

 



Getting Started. First, open the function robot_simulation.m in the MATLAB editor and 

press “Run” (shortcut F5). This will run the simulation and open three figures: 

Figure 1: 

 Animation of results. The actual robot position and wheel angle are drawn, as is an 

outline of the course. The actual robot position traces out a blue line, with blue dots 

representing the locations at which the piston fires. The position estimate produced by 

the estimator traces out a red line, with red ‘x’s representing the locations at which the 

reed switch is triggered by magnets. If using the via-points control strategy, the current 

target position is presented with the dark grey circle and the other targets in the list of 

targets is presented with the light grey circles. On the top left you can see the current 

score of your robot. 

Figure 2: 

Top – Robot speed. Shows both the actual speed of your robot throughout the simulation 

and the estimate speed using the reed switch and magnets on the wheel. 

Middle – Steering angle. Shows the actual steering angle of your robot throughout the 

simulation and the expected angle output from your control strategy. 

Bottom – Steering error. Show the error in the steering angle that has been added to your 

servo to make it more realistic. This error is what comes from servo angle error in the 

controller or changes in the terrain that may cause changes in the position of your steering 

mechanism. 

Figure 3: 

These plots in figure 3 come from your data input that will be discussed later in this guide. 

Top – Impulse response of position. The actual robot positions measured at different 

times during the impulse response experiment, with the estimate position plotted over 

them.  

Middle – Impulse response of velocity. The derivative of the estimated position. Each time 

the piston fires, this pattern is added to the time history of velocity to simulate the 

superposition of several piston fires.  

 

 

 

 

 

 



Exploring different controllers. There are three different controllers implemented in the 

default simulation: 

• Open-loop control: uses number of ticks to decide when to start turning, and time 

to decide when to stop turning. No sensors used. 

• Hybrid control: uses ticks to decide when to start turning, and time to decide when 

to stop turning. After that, it uses the magnetometer to try to keep the correct 

direction 

• Closed-loop control: uses a via-point strategy with dead reckoning as well as the 

magnetometer to control the robot. 

To select the controller you want to use you should change the variable control_type in 

the file “\Setup Simulation\load_control_parameters.m”. The parameters for each of the 

controllers are also in the same file. This file is also the one you create any extra variable 

that you want to use in your controller. In a parallel with Arduino, this is the place where 

you would declare your variables in combination with your void setup() function. 

The actual control for both the piston and the servo motor are in the “\Execute 

Simulation\update_control.m”, and you can look at this function as the void loop() in your 

Arduino. Finally, the implementation of the controllers can be found in the folder “\Execute 

Simulation\Control”.  

 

Robot Dynamics and Estimation. The dynamics of most 

robots in this competition can be well represented by the 

dynamics of a three-wheel design in which the front wheel 

pivots for steering. Call the distance between the rear 

wheels 𝑎 and the distance between the rear axle and pivot 

point of the front wheel 𝑏. 

Describe the robot’s x-y position on the 

course 𝑝 = (𝑝𝑥, 𝑝𝑦) as the position of the 

center of the back axle. For the 

simulation, the x-axis is defined as the 

one parallel to the channel with the point 

(0,0) lying in the middle of the opening in 

the trench wall. Describe the robot’s 

direction = 𝝓 as the angle between the 

robot’s forward direction and the x-axis. 

Finally describe the robot’s servo angle = 

𝜽 as the angle between the front wheel’s orientation and the orientation that would cause 

the robot to move in a straight line. 



Assuming that wheels do not slip, the governing principle behind the robot’s kinematics 

during steering is that all of its wheels are constrained to move in the directions 

perpendicular to their axles (i.e. no slip). This means that when the robot moves, it will 

rotate about a point 𝑐 = (𝑐𝑥, 𝑐𝑦) such that 

all wheels move along circles whose 

centers lie on that point. To determine the 

radii of these circles it is helpful to 

observe that they represent sides of a 

right triangle whose angle at 𝑐 equals 𝜃. 

The radii of these circles can therefore be 

seen to depend on 𝜃 according to the 

simple trigonometric relations: 

𝑟(𝜃) =
𝑏

tan(𝜃)
… (1𝑎) 

𝑟𝑤(𝜃) =
𝑟(𝜃)

cos(𝜃)
… (1𝑏) 

It is also helpful to observe that the angle 

at 𝑐 between the y-axis and the rear axle 

equals 𝜙. 

Because the robot is constrained to move in a circle around 𝑐, movement of the robot can 

be simulated from the robot’s steering angle and the rotation of one of the its wheels. The 

simulation requires update rules for 𝑝 and 𝜙 so that with each increment in time Δ𝑡, it can 

determine the robot’s new position and orientation based on its previous position and 

orientation. 

We know that as the robot moves, the 

point 𝑝 will trace an arc (on a circle with 

radius 𝑟(𝜃) centered at 𝑐) whose central 

angle equals the change in the robot’s 

orientation. If we determine the arc length 

Δ𝑠 traced in an amount of time Δ𝑡, we can 

derive the update rules for 𝑝 and 𝜙 with 

ease. The simulator uses the 

experimentally measured impulse 

response of the robot to predict the speed 

of the robot, 𝑣, in response to firing the 

piston. Δ𝑠 can then be found by dividing 

that speed by the sample time: 

Δ𝑠 = 𝑣Δ𝑡… (2) 



Because for a hopper, the reed switch will likely be placed on the front wheel, which never 

leaves the ground, it can be helpful to relate Δ𝑠𝑤 traced by the front wheel to Δ𝑠.  

The arcs depicting the movement of 𝑝 and the front wheel have lengths Δ𝑠 and Δ𝑠𝑤 

respectively, and have the same central angle Δ𝜙 equal to the change in 𝜙 that has 

occurred since the last update. Therefore, these arc lengths follow the proportionality 

relationship: 

Δ𝑠

Δ𝑠𝑤
=

𝑟(𝜃)

𝑟𝑤(𝜃)
… (4) 

Solving and substitution yields the 

relationship: 

Δ𝑠 = Δ𝑠𝑤 cos(𝜃)… (5) 

The update rule for the robot’s orientation 

can be found using the relation between 

central angle, arc length and radius: 

Δ𝜙 =
Δ𝑠

𝑟(𝜃)
… (6) 

Finally, the robot’s position 𝑝 relative to 𝑐 

can be found before and after the update, 

and subtracted:  

(𝑝𝑥, 𝑝𝑦) = (𝑐𝑥 + 𝑟(𝜃) sin(𝜙) , 𝑐𝑦

− 𝑟(𝜃) cos(𝜙))… (7) 

(𝑝𝑥 + Δ𝑝𝑥, 𝑝𝑦 + Δ𝑝𝑦) = (𝑐𝑥 + 𝑟(𝜃) sin(𝜙 + Δ𝜙) , 𝑐𝑦 − 𝑟(𝜃) cos(𝜙 + Δ𝜙))… (8) 

Subtracting equation 7 from equation 8 yields the update rule for 𝑝: 

(Δ𝑝𝑥, Δ𝑝𝑦) = (𝑟(𝜃)[sin(𝜙 + Δ𝜙) − sin(𝜙)], −𝑟(𝜃)[cos(𝜙 + Δ𝜙) − cos(𝜙)])… (9) 

Equations 6 and 9 together can be applied each time step to model of the robot’s position 

and orientation in response to any pattern of piston firing. Although steering angle may 

change between time steps, making Δ𝑡 small will generally lead to good approximations. 

Due to the singularity in equation 1a at 𝜃 = 0, simple update rules for straight line motion 

must instead be used when the robot is traveling in a straight line: 

Δ𝜙 = 0… (10) 

(Δ𝑝𝑥, Δ𝑝𝑦) = (Δ𝑠 cos(𝜙) , Δ𝑠 sin(𝜙))… (11) 

For four-wheel designs or designs with the reed switch placed near a rear wheel, equation 

5 would need to be replaced with the appropriate relationship. For four-wheel designs 𝜃 

might refer to the orientation of one of the front wheels or be experimentally related to 



servo motor angle by measuring the resulting radii of rotation for various servo motor 

angles. 

Estimator. Wheel rotation can be measured by counting how many times a reed switch 

mounted near a wheel passes magnets attached to the wheel. This measurement has 

finite resolution, limited by the number of magnets (e.g. with four magnets the resolution 

is a quarter of a revolution). Note that for a three-wheeled hopper design it is preferable 

to measure rotation of the front wheel, as the rear wheels will likely hop off of the ground, 

and their rotation will not well reflect the movement of the robot. Our goal is to develop an 

update rule for 𝑝 so that each time a magnet passes the reed switch, we can estimate the 

robot’s new position. The robot’s orientation can simply be estimated using the compass. 

Equations 5 and 11 create a sufficiently strong estimator of 𝑝 given rotation of the front 

wheel and steering angle. In this case, Δ𝑠𝑤 and Δ𝑠 can be regarded as the distance 

traveled each time a magnet passes the reed switch. 

Small errors in these update rules will accumulate over time, particularly given that 𝜃 is 

measured from the angle input to the servo and not from direct measurement of the 

steering angle. This error can be mitigated by filtering the signal from the compass, to 

produce a more accurate, less noisy, estimate of orientation, which in turn leads to an 

improved estimate of the robot’s position.  

Entering Robot Parameters. There are numerous parameters in the load functions 

(inside the Setup Simulation folder) that you should enter to cause the simulated 

dynamics to closely match true dynamics of your robot. Parameters labelled [MEAURE] 

should be quick to measure and enter. Parameters labelled [EXPERIMENT] will probably 

require some amount of experimentation to tune the simulation to match your robot. 

Parameters labelled [SELECT] are for you to decide what values to use, such as selecting 

and tuning a control law. Try different options and see what works best. 

Simulation Features. The simulation has a few additional features that will help test the 

performance of your robot during the competition. First the simulation can randomly place 

obstacles (stationary opposing robots) that can be detected when within some distance 

of your robot. By default, the controller turns sharply to the left or right to avoid obstacles 

on the right or left respectively. The advantage of using feedback control is that after 

avoiding an obstacle, the controller will guide the robot back on track. 

The simulation also models the stochastic nature of the robot dynamics. First, the 

simulation applies a moderate drifting error to the robot’s steering angle. This represents 

the likelihood that the relationship between the servo motor input and the steering 

mechanism angle is not perfectly consistent. Second, the simulation applies a random 

error to the magnetometer angle. This prevents the magnetometer from being useful as 

a perfect measure of robot orientation, representative of the limitations of the of the actual 

magnetometer.  



Calibration Experiments. One important step in calibrating your robot is to measure its 

impulse response. In this context, an impulse response can be described as the velocity 

curve that results from a single firing of the piston. If the robot behaves like a linear 

system, then adding multiple instances of the impulse response (one each time the piston 

fires) should approximate the robot’s true velocity. This is actually how the simulation 

models the robot’s velocity.  

To calibrate the simulation with the impulse response of your robot, write a short Arduino 
code that fires the piston once and records the time whenever a magnet passes the reed 
switch until the robot stops. Then enter the times into the MATLAB function  
“\Setup Simulation\load_impulse_response.m” in the section labelled “Impulse Response 
(velocity profile created by one pulse)”. Enter these times as a row of the matrix 
impulse_response.data. You can enter as many rows as you collect (if the rows are 
different lengths, add NaN values at the end of the short rows until they are all the same 
length). The simulation will then combine these results and calculate the average impulse 
response. 

If your robot’s impulse responses do not add linearly, you can apply a scaling factor to 

the impulse response (scale_impulse_response) so that the max speed predicted by the 

simulation matches that of the actual robot. Simply calculate your robot’s max speed, 

simulate the robot moving at max speed and set the scaling factor to the ratio of the two. 

Most robots also slow down as the air tank pressure drops. To simulate this behavior, the 

impulse response can be scaled by a function of how many times the piston has fired 

(decay_impulse_response). Currently the simulation assumes a quadratic relationship 

between number of fires and scaling factor until the factor decays to zero (after 56 fires). 

 

Implementing the Estimator and Controller in your Arduino Sketch. For the most 

part, the code in the simulation’s estimator and controller blocks can be translated into 

your Arduino program. Some of the math is trickier to program in Arduino than in MATLAB 

so be patient and look up how to use different mathematical and trigonometric functions. 

As part of your controller in Arduino, you will need to implement the sequences of targets 

you use in the Matlab simulation. It will help to make sure that you understand what is 

happening in MATLAB before you transfer a line to Arduino, and think about ways to us 

the Serial Monitor to test that your estimator and controller are working as expected. Best 

of luck, and remember, Google is your friend! 


